让阅读成为一种享受!若被转/码,可退出转/码继续阅读.
这里非常关键的因素就是能量的本质和其运动规律,但实际的观察是难以实现的,那么我们可以从这个方式来猜想能量的结构:以已知的物质的结构为基础,研究能量在物质构成、运动、转化中所起到的作用,这样就可以比较有效地猜测能量的本质了。
1。物质结构
(1)分子。
我们已知物质是粒子构成的,物质中能dú li存在并保持其组成和一切化学特xing的最小微粒是分子。分子是由原子用化学键结合在一起而构成的,原子之间的作用力比较强,但分子之间的作用力却相当弱,所以分子在一定程度上表现出dú li粒子的行为。分子可以由同种原子组成,也可以由不同种类的原子组成。最简单的分子只含有一个原子,如稀有气体的分子。大多数非金属构成的分子为双原子分子,如氮、氧等分子。化合物是由不同元素组成的分子,为数最多。
物质一般可以分为固体,液体,气体三种。一种物质在不同的条件下(如温度,压力等)可以处于不同的物态。而决定一种物质究竟处于何种状态的一个基本因素就是组成物质的分子之间的距离。固体和液体有一个共同特点:它们的分子间的距离不大,因而分子间有较强的相互作用,这使得固体和液体都不易压缩,而且在微观结构上不像气体那样无序。
可以用能量的观点来看上表,那么物态体现出的是物质内部的能量状况:气体的分子动能很大,它们的分子可以基本在空间内zi yóu移动和扩散;液体和固体的分子动能较小,分子间的势能起主导作用,它们被相互束缚起来。液体的分子可以较大地振动,所以液体可以整体地,有限地扩散和移动。固体的分子被束缚得很紧,它们只能很轻微地振动,因此固体可以在长时间内保持稳定而不扩散和移动。
(2)原子
构成化学元素的基本单元和化学变化中的最小微粒,即不能用化学变化再分的微粒。原子由带正电的原子核和带负电的核外电子组成,原子核非常小,但原子质量的99.95%以上都集中在原子核内。质量很小的电子在原子核外的空间绕核作有规律的高速运动,原子核和核外电子相互吸引,组成中xing的原子。原子核由质子和中子组成。质子和中子统称为核子,核电荷数即为核内质子数。核是非常致密的,核子彼此紧靠在一起。
上左图为一种经典的原子模型,每一个电子都在一定的轨道上绕着原子核运动。没有电子能够旋转于这些固定的轨道之间的任何一点上,电子也不能落入原子核里。另外,每一个轨道包含的原子都有一个最大值。
右上图为较新的电子云模型。电子充满原子核周围的球形空间。在含有多个电子的原子里,由于电子的能量不同,它们运动的区域也不同。通常,能量低的电子在离核较远的区域运动。我们可以将不同的区域分为不同的能级,分别对应不同能量的电子。
在这两个模型中都有一个共同点,就是电子离核越远,能量也就越高。我们同样可以用动能和势能的观点来解释原子的模型:原子核和电子之间有吸引力,而动能的存在维持着原子核和电子的相互位置和关系,所以在电子和原子核之间包含着势能,原子核和电子间的吸引力越强,那么势能就越强。但在这里,假定一个电子在靠近原子核,那么势能会转化为电子的动能,当动能足以克服吸引力,它就会停止靠近原子核并最终远离原子核;当它远离原子核时,动能便转化为势能,当动能不足以克服吸引力时,它便会停止远离原子核而开始靠近原子核……这样子往复下去,除非有外来的能量打破这种平衡。
(3)物质的能量稳定
由于物质的结构特点,导致不通物态的物质在吸收一定能量后产生的改变是完全不同的。比如热胀冷缩的程度:气体受热膨胀地十分剧烈和明显,液体较为明显而固体最不明显。这是因为在气体分子间的束缚最弱,在吸收能量后分子间的距离迅速地扩大,导致空间上的体积迅速扩大。
不同物态的物质本质是一致的,只不过在微观结构上的能量状况不同。如果再看一个例子将对这个问题有更深入的认识。
固体可以分为晶体和非晶体两大类。晶体和非晶体在外形上和物理xing质上都有很大区别:
外观上晶体有规则的几何形状,非晶体没有规则的几何形状;晶体的一些物理xing质表现为各向异xing(晶体的物理xing质和方向有关),非晶体的各种物理xing质是各向同xing(非晶体的各种物理xing质在各个方向上都是相同的);晶体有确定的熔点,非晶体没有确定的熔点。